

The Engine of SOC Design

# **Green Computing:** What Does it Mean for Embedded Silicon Systems?

Dr. Chris Rowen Founder and CEO Tensilica Steve Leibson Technology Evangelist Tensilica

# tensilica

# **Electronics Inefficiency is a Global Problem**

### Direct energy use for all Information Technology (PCs, telephony, consumer electronics, corporate)

### 6% of all electricity

200,000,000,000,000 watt-hours per year (~30 800MW central baseload power plants) for U.S, alone

Nearly 150 million tons of  $CO_2$  per year Equivalent to 30 million cars

# Lack of smart energy management in other major energy uses:

Cars Lighting Heating

## Needed:

more energy-efficient designs!





# Moore's Law No Longer Helps Power Denard Scaling Died at 90nm

### Silicon Energy Efficiency



### The only good answer is parallel functions

1 block:Frequency1Voltage1Power1Area1Throughput1



### 2 blocks in parallel:

| Frequency  | 0.5  |   |
|------------|------|---|
| Voltage    | 0.5  | L |
| Power      | 0.25 |   |
| Area       | 2    |   |
| Throughput | 1    |   |



Source: Shekhar Borkar, Intel, "Exponential Challenges, Exponential Rewards— The Future of Moore's Law", 2004 Tensilica cores have been characterized to 0.6v - ~10µW/MHz © 2008. Tensilica Inc.





Source: John Paul Shen, Intel Microarchitecture Research Lab WCED Panel: June 18, 2006 and Tensilica



# Number of Processors Increasing with Smaller Geometries



### **Control Plane:**

- Need more performance
- General-purpose software
- Big challenge: Rewriting software for parallel execution
- Hard to use multiple cores

### Data Plane:

- Need lots more performance
- Shift to processorbased data-plane
- Parallelism among functions makes it easy to use multiple cores
- Big challenge: Finding common architectures to ease integration

© 2008. Tensilica Inc.

### 5

### tensilica **Formula for Energy Efficiency Success**

### **Multi-core Design**

- Many small cores
- Interfaces, memory and bus
- Modeling and software development

### **Optimized Processor**

- Easy to configure and extend for exact application and lowest power
- Tools automatic processor creation: **High differentiation, low** pain:
- **Proven solutions for** networking, multimedia, wireless and consumer

#### = **Energy Breakthrough**

- Battery life and mobility
- Simplified packaging, power, cooling
- · Reduced product and operating costs
- Lower environmental impact



tensilica

# Low Energy Processor Opportunity 1 optimized instruction = 5-50 RISC instructions



# Key Technologies Tensilica Instruction Extension (TIE)





9

# Key Technologies New Communications Support Multi-Core









# Key Technologies XPRES Compiler: Automatic Processor Design





# Key Technologies Multi-Core Programming

# Multi-Core Programming Models

Symmetric and asymmetric processor relationships

### Abstract Models:

### Shared memory

- Message passing
- Data-flow
- Device driver

# Decouple application programming model from implementation:

- Hardware message queues vs. memory-mapped message queues
- Hardware vs. software cache coherency

## **Multi-Core Tools**

# Rapid construction of SMP and AMP multi-core models

- С
  - System C
- Coware
- VaST

# Direct generation FPGA prototypes for mutli-core

Fully cycle-accurate MP models

Fast bit-accurate "TurboXim" demonstrated to 400 CPUs in single simulation

Full model + software tools support for hardware message passing

Standard synchronization primitives in ISA

Lightweight shared memory communications library

MP OS – e.g. SMP Linux



# Most Top Printer Makers Use Tensilica

EPSON's REALOID heterogeneous, asymmetric, 6 Xtensa core design with little hard-wired logic







EPSON PM-D870

Epson REALOID IC Block Layout

90nm process technology, 100-200 MHz clock rate, 5-10M gate-count complexity, Less than 2.5W power 13 For more details, see the EPSON presentation, 2006 Nikkei Electronics Processor Symposium / Multi-Core Expo Japan









15

# tensilica Where Now?

- We have all the transistors—hence performance—that we need
- Let's teach designers to use these systems resources efficiently

Tuned processors with parallel execution paths running at low clock rates

Appropriate communications running at reduced bandwidths





"A single kilometer-wide band of geosynchronous Earth orbit experiences enough solar flux in one year to nearly equal the amount of energy contained within all known recoverable conventional oil reserves on Earth today."

2007 Study by the US Pentagon's National Security Space Office